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1 Preface
These lecture notes were provided in the summer of 2016 to a “D-Wave Interest Group” (DWIG) pre-
dominantly comprised of first-year MS students in the Electrical and Computer Engineering (ECE) de-
partment at the University of California, San Diego. Participation was entirely voluntary and no course
credit was given. The DWIG, which met weekly, was interested in participating in a course of directed
reading aimed at understanding Adiabatic Quantum Computation (AQC) and Quantum Annealing (QA).
The purpose of the lecture notes given below was to supplement and expand on some of the quantum
mechanics (QM) discussion provided in the NASA/JPL/D-Wave/USC report [24], the D-Wave research
memorandum [22], and the monograph [18]. Specifically, because the participants in the DWIG had little
or no prior exposure to quantum mechanics, the notes attempt to “fill in the blanks” of some of the dis-
cussion given in references [24, 22, 18]. In particular, other than some aspects of its pedagogic content,
there is no claim to originality of these notes over and above the material presented in standard references
such as [24, 22, 18], among others.

The background of the approximately ten participants during Summer 2016 was typical for contem-
porary BS degree graduates of EE and CS departments who have had additional courses in machine
learning and pattern recognition roughly corresponding to the level of [3]. In particular, the participants
had a level of proficiency in probability and random variables roughly corresponding to the level of the
textbook [21], and in linear algebra roughly corresponding to the level of the textbook [20]. Typical
for EE/CS graduates, they were also knowledgeable about the theory of ordinary differential equations.
Other than the cursory introduction given in standard lower division physics courses, the participants had
had no prior exposure to quantum mechanics.

Fortunately, the prior exposure to linear algebra at the relatively sophisticated and geometrically-
motivated level of [20] meant that the participants effectively had already been introduce to the theory of
finite-dimensional Hilbert spaces (except for the concept of a dual space, which was straightforward to
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present and motivate). With this background, and some required translation of notation and terminology
from linear algebra to the Dirac notation-based finite-dimensional Hilbert space formalism, the DWIG
could be quickly exposed to the (non-relativistic) finite-dimensional quantum mechanics of systems of
distinguishable (non-identical) spin-1

2
particles (qubits) needed to understand AQC. This was accom-

plished by assigning as mandatory reading the first seven chapters of the very accessible textbook by
Susskind and Friedman [26], which has a primary focus on spin-1

2
systems and provides an introduction

to the density matrix. Suggested additional sources for the mathematics of qubit systems were [14] and
[12], the former reference providing a detailed discussion of manipulating the Pauli spin matrices and the
latter providing additional discussion of the density matrix.1

As relevant background to these notes, prior lectures were given on the classical (non-quantum me-
chanical) stochastic Ising spin-glass model used both for modeling neural networks and for optimization
of boolean objective functions via simulated annealing. The discussion of stochastic neural networks
was based on material drawn from the classic textbooks of Hertz, Krogh, and Palmer [9] and Amit [1],
while the discussion of simulated annealing (SA) was drawn from the foundational paper [15] and the
presentation in [9].2 Because, as discussed in [15, 9], classical equilibrium statistical mechanics plays
a fundamental role in simulated annealing-based optimization, prior lectures based on material drawn
from [4, 19] were given to provide an overview of the classical canonical ensemble, Boltzmann-Gibbs
distribution, and Helmholtz free energy. Further, As noted in the D-Wave memorandum [22], equilibrium
statistical mechanics is equally important for understanding key aspects of quantum annealing, motivating
the discussion of quantum and classical statistical mechanics given in the notes below.3

In the lectures given to the DWIG, it is emphasized that the D-Wave computer is an extraordinarily
sophisticated and advanced applied physics, engineering, and mathematical system that can be understood
and engaged with at several levels:

1. Most fundamental is the device physics and engineering level. This requires a deep understanding
of experimental and applied low-temperature physics and devices, such as SQUIDs, which are
based on low-temperature phenomena and structures such as the Josephson junction.

2. Closely tied to the device and engineering physics level are the detailed mathematical models that
guide the design, construction, and assembly of the components of the D-Wave computer to ensure
that the system behaves like a controllable quantum mechanical spin-glass system of intercon-
nected distinguishable qubits (via the use of “manufactured spins” [13]). For a discussion of issues
pertaining to Levels 1 and 2, the DWIG participants were referred to references [8, 13, 24].

3. The next higher level of abstraction is provided by the quantum mechanical spin-glass behavior that
is enforced by Levels 1 and 2. This behavior is used to analyze, design, and implement quantum
annealing algorithms capable of combinatorial optimization (specifically quadratic unconstrained
binary optimization (QUBO) problems) subject to device imposed constraints.

4. This level of abstraction assumes that the D-Wave computer functions as a black box capable of
solving a certain family of QUBO problems. The onus is on the user to translate a combinatorial
optimization problem of interest to QUBO form.

1More advanced QM references used in the drafting of these notes are [16, 6, 2, 5, 23].
2In the discussions and notes below, following [18], we often refer to SA as “Classical Annealing” (CA) to distinguish SA

from the “Quantum Annealing” (QA) described in [24, 18].
3Useful references for quantum statistical mechanics are [10, 17, 19, 11, 25]. The extension of the Ising spin-glass model

to the quantum mechanical Heisenberg model of ferromagnetism is briefly discussed in [11].
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5. The highest level of abstraction exists when a user merely specifies a combinatorial optimization
problem and a “compiler” exists that is capable of translating it to QUBO form that can be solved
by the D-Wave computer.

2 Finite Dimensional Hilbert Space and Hermitian Operators

2.1 General Background
Let H be a finite-dimensional Hilbert space of dimension n over the field of complex numbers. It is an
axiom of quantum mechanics that a complex Hilbert space can serve as the state-space of (the pure states
of) a quantum mechanical system of interest.4

Let M denote an observable quantity in physical space that can take experimentally measured real
values m0, · · · ,mn−1. It is a second axiom of quantum mechanics that the physical observable M is
represented by M̂ , a self-adjoint (hermitian) linear operator in the Hilbert space H whose eigenvalues
are precisely equal to the experimentally measurable values mi. The situation is as follows, when a
measurement of M is taken, one of the real eigenvalues of M̂ , m = mi, is observed and the quantum
state “jumps” to the corresponding eigenvector, |φ〉 = |φi〉, of the operator M̂ .5

The eigenvectors and eigenvalues of the self-adjoint operator M̂ are given by,6

M̂ |φj〉 = mj|φj〉, j = 0, · · · , n− 1

with mj ∈ R. The information provided by the eigenvectors and eigenvalues are encoded in the spectral
representation (or spectral decomposition),7

M̂ =
n−1∑
j=0

mj|φj〉〈φj| =
n−1∑
j=0

mjP̂
(φj), (1)

where
P̂ (φj) = |φj〉〈φj|.

is the orthogonal projection operator onto the one-dimensional subspace spanned by |φj〉.8 The identity
operator Î can be resolved as,

Î =
n−1∑
j=0

|φj〉〈φj| =
n−1∑
j=0

P̂ (φj).

By induction on the eigenvalue/vector equation, M̂ |φj〉 = mj|φj〉, we have

αM̂k|φj〉 = αmk
j |φj〉 for j = 0, · · · , n− 1 and k = 0, 1, · · ·

4We use the standard “Copenhagen interpretation” axiomatic approach articulated by von Neumann; see the discussion
in [6]. The derivations given in this note are (for the most part) valid and straightforward because we are working in a
finite-dimensional Hilbert space; things are tricker in infinite-dimensional Hilbert spaces. For example, linear operators on
a finite-dimensional Hilbert space H, n = dim (H) < ∞, are all bounded, have point spectra (n eigenvalues only in the
spectrum), and a domain of definition equal toH [7].

5This occurs probabilistically, as we discuss when we present “Axiom 3” in the next section.
6We assume that the (orthogonal) eigenvectors have been normalized so that 〈φi|φj〉 = δij .
7All self-adjoint linear operators on a finite dimensional Hilbert space of dimension n have a complete set of n orthonormal

eigevectors that can be used as a basis for the space, and n associated real eigenvalues. This means that every self-adjoint
operator on a finite dimensional Hilbert space has a discrete spectrum.

8It is straightforward to show that P̂ (φj) is self-adjoint and idempotent.
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for any scalar α ∈ C. As a consequence,

Poly(M̂)|φj〉 = Poly(mj)|φj〉 for j = 0, · · · , n− 1

for any polynomial function Poly(z) and, more generally,

F (M̂)|φj〉 = F (mj)|φj〉 for j = 0, · · · , n− 1 (2)

for any analytic function F(z). Note that F (mj) and |φj〉, j = 0, · · ·n − 1, are the eigenvalues and
orthonormal eigenvectors of F(M̂) and therefore the operator F(M̂) has a spectral decomposition,

F(M̂) =
n−1∑
j=0

F (mj) |φj〉〈φj| =
n−1∑
j=0

F (mj) P̂
(φj). (3)

2.2 Energy Eigenstates and Energy Representation

Consider the very important observable represented by the operator Ĥ , the Hamiltonian operator. It
represents represents the observable energyE which takes real valuesE0, · · · , En−1. The possible energy
values are assumed to be ordered as,

E0 ≤ E1 ≤ E2 ≤ · · · ≤ En−1,

where E(0) = E0 is the ground state and E(1) = min{Ej |Ej > E0} is the first excited state.9 The
eigenvectors and eigenvalues (energy values) of Ĥ are, of course, related by,10

Ĥ|ψj〉 = Ej|ψj〉, j = 0, · · · , n− 1

Ĥ =
n−1∑
j=0

Ej|ψj〉〈ψj| =
n−1∑
j=0

EjP̂
(ψj),

and

Î =
n−1∑
j=0

|ψj〉〈ψj| =
n−1∑
j=0

P̂ (ψj)

with Ej ∈ R.

When a general state vector |φ〉 is represented in terms of the eigenvectors of Ĥ ,

|φ〉 = Î |φ〉 =

(
n−1∑
j=0

|ψj〉〈ψj|

)
|φ〉 =

n−1∑
j=0

cj |ψj〉, cj = 〈ψj|φ〉,

we call this the energy representation of |φ〉.11 As a preliminary application of the very useful Equations
(2) and (3), note that they imply

e−βĤ |ψj〉 = e−βEj |ψj〉.
and

e−βĤ =
n−1∑
j=0

e−βEj |ψj〉〈ψj|.

9More generally we index distinct energy levels by E(`) in order of increasing magnitude, E(`+1) > E(`). Note that if the
ground state is nondegenerate then E(1) = E1.

10Again assume that the eigenvectors have been normalized, 〈ψi|ψj〉 = δij .
11Note that the energy representation is equivalent to the column vector representation c = (c0, · · · , cn−1)

T ∈ Cn.
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3 Probabilities and the Density Matrix

Given that the system is in state |ψ〉 ∈ H, it is a third axiom of quantum mechanics that the probability
that a measurement will observe the system to be in state |φ〉 is given by,12

pψ(φ) = |〈ψ|φ〉|2.

Note that,13

|〈ψ|φ〉|2 = 〈ψ|φ〉〈φ|ψ〉 = tr
(
|ψ〉〈ψ| |φ〉〈φ|

)
= tr P̂ (ψ)P̂ (φ).

Suppose, then, that the quantum mechanical system is (has been prepared to be) in state ψ. We define
the density matrix (aka density operator) by

ρ̂ = P̂ (ψ) = |ψ〉〈ψ|.

Note that in this case ρ̂ ⇐⇒ ψ, so that pψ(φ) = pρ̂(φ), which begins to explain why in quantum
mechanics the density matrix ρ̂ itself is also called the state of the system. With this definition we have,

pψ(φ) = tr ρ̂P̂ (φ) with ρ̂ = P̂ (ψ) = |ψ〉〈ψ| and P̂ (φ) = |φ〉〈φ|. (4)

The most general form of the density matrix is

ρ̂ = w1P̂
(1) + · · ·+ wmP̂

(m) (5)

where P̂ (j) = |ψj〉〈ψj| are projection operators onto one-dimensional subspaces of H spanned by unit
vectors |ψj〉, wj > 0, and w1 + · · ·+ wm = 1. It is important to note that the subspaces spanned by |ψj〉
do not have to be mutually orthogonal.14 Note that the general density matrix ρ̂ is self-adjoint, ρ̂ = ρ̂∗,
and that tr ρ̂ = 1. One can utilize a decomposition of the form (5) to prepare the system to be in state ρ̂
by choosing an basis {|ψ0〉, · · · , |ψn−1〉} and then selecting a state |ψj〉 (which is equivalent to selecting
P̂ (j) = |ψj〉〈ψj|) according to a probability equal to wj . Once the state ρ̂ has been prepared, however,
it is an important fact that the decomposition (5) generally is not unique, which can be interpreted to
mean that the system “forgets” (or “does not know”) how it was prepared to be in state ρ̂ since there are
many possible ways to do this.15 Nonetheless, given the mathematical expression (5) (which describes
a possible preparation procedure), one can interpret wj to be the “prior probability” that the system was
prepared to be in state |ψj〉 if in fact Eq. (5) did describe the actual preparation procedure (which it might
not, given that other decompositions are possible).

12Some authors refer to pψ(φ) as the transition probability because it is the probability that state |ψ〉 transitions to state
|ψ〉, |ψ〉 → |φ〉, as a consequence of taking a measurement. The third axiom is known as Born’s Rule, after Max Born who
proposed it in 1926.

13For any bounded operators (e.g., for matrices) A and B,

trAB = trBA.

This is a very useful result. Here we use the fact that given two column vectors a and b, aHb = tr aHb = tr baH .
14Note that when the unit vectors |ψj〉 are not orthogonal, then Eq. (5) is not a spectral representation of ρ̂. However, when

they are orthogonal, then (5) is a spectral representation.
15Another interpretation is that ρ̂ contains the simultaneous quantum superposition of all of the (potentially infinite) ways

that it could have been prepared into existence, which is another example of “quantum parallelism.” Discussion of the
nonuniqueness of the density matrix can be found in Chapter 2 of [2] and in Appendix A below.
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If there exists a state |φ〉 ∈ H such that the general density matrix can be written as ρ̂ = P̂ (φ) = |φ〉〈φ|,
then we say that ρ̂ is a pure state. if ρ̂ is pure, then the system is in a definite quantum mechanical state
|φ〉. If ρ̂ is not pure, and must be written in the general form (5), then it is a mixed state.16

Given that the quantum mechanical system has been prepared in a state ρ̂, then the expected value of
an observable M̂ is given by,

〈M〉 , E {M} = tr ρ̂M̂ . (6)

Representing the density matrix ρ̂ by a decomposition (5), this is straightforward to show:

tr ρ̂M̂ =
n−1∑
j=0

wj |ψj〉〈ψj|︸ ︷︷ ︸
P̂ (ψj)

n−1∑
i=0

mi |φi〉〈φi|︸ ︷︷ ︸
P̂ (φi)

=
n−1∑
j=0

wj

n−1∑
i=0

mi |〈ψi|φj〉|2

=
n−1∑
j=0

wj

n−1∑
i=0

mi pψ(φi)

=
n−1∑
j=0

wj Eψ {M}

= E {M} = 〈M〉.

4 The Boltzmann-Gibbs Distribution

4.1 Some Canonical Statistical Mechanics
For a mechanically isolated quantum mechanical system placed in a heat bath at constant temperature T ,
constant volume V , and constant particle number N , the density matrix is given by the canonical density
matrix, or Boltzmann-Gibbs density matrix,17

ρ̂ =
e−βĤ

tr e−βĤ
, (7)

with β = 1
kT

, where for physical systems k is taken to be Boltzmann’s constant, k = kB.18 Note that,

e−βĤ = e−βĤI = e−βĤ
n−1∑
j=0

|ψj〉〈ψj| =
n−1∑
j=0

e−βĤ |ψj〉〈ψj| =
n−1∑
j=0

e−βEj |ψj〉〈ψj|.

With tr |ψj〉〈ψj| = 〈ψj|ψj〉 = 1, we have

tr e−βĤ =
n−1∑
j=0

e−βEj = Zβ, (8)

16To reiterate: if ρ̂ is a mixed state, then it cannot be written as ρ̂ = P (φ) for some state |φ〉 ∈ H. I.e., the system is not in a
definite quantum mechanical state |φ〉 ∈ H.

17We will also refer to this form of ρ̂ as the canonical state or the Boltzmann-Gibbs state.
18We will take k = 1.
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where Zβ is the partition function.19 Thus the Boltzmann-Gibbs density matrix takes the form,

ρ̂ =
n−1∑
j=0

e−βEj

Zβ
|ψj〉〈ψj| =

n−1∑
j=0

wj |ψj〉〈ψj|, wj =
e−βEj

Zβ
. (9)

Note that wj is the Boltzmann-Gibbs probability that a mechanically isolated, constant particle and
constant volume statistical system in a heat bath is in the energy eigenstate |ψj〉. Indeed, consider the
observable M represented by the operator,

M̂ = P̂ (j) = |ψj〉〈ψj| = 1 · |ψj〉〈ψj|+ 0 ·
∑
i 6=j

|ψi〉〈ψi|.

The observable M corresponds to asking (and taking a measurement to answer) the question:20

Is the system in the particular energy eigenstate |ψj〉 with energy (eigenvalue) Ej?

Note that this question corresponds to the (random) indicator function,21

M = 1(E(ψj) = Ej) ⇐⇒ ρ̂ = P̂ (j) = |ψj〉〈ψj|.

We have

p(ψj) = E {1(E(ψj) = Ej)} = 〈M〉 = tr ρ̂M̂ = tr ρ̂P̂ (j)︸ ︷︷ ︸
〈P̂ (j)〉

= wj =
e−βEj

Zβ
,

which is the Boltzmann-Gibbs distribution, pj = p(ψj) = Z−1
β e−βEj , encountered in classical statistical

mechanics.22

Having gone from the quantum mechanical statement of the canonical distribution to the classical
statement, let’s go in the reverse direction:

pj =
e−βEj

Zβ
=

n−1∑
i=0

e−βEi

Zβ
|〈ψi|ψj〉|2︸ ︷︷ ︸

δij

= tr
n−1∑
i=0

e−βEi

Zβ
|ψi〉〈ψi| |ψj〉〈ψj|

= tr

(
n−1∑
i=0

e−βĤ

Zβ
|ψi〉〈ψi|

)
|ψj〉〈ψj|

19ForN � 1, the number of states, n, is a very large number and it is generally intractable to compute the partition function
Zβ .

20Note that this question is more precise than asking if the system is in any eigenstate that has energy Ej . This is because
of the possibility that the energy Ej could be degenerate (i.e., have more than one eigenstate with the same eigenvalue Ej).
Thus we are not asking for the probability that the system has energy Ej ; we are asking for the probability that the system is
in state ψj which is only one of the energy Ej eigenstates if energy level Ej is degenerate.

21This is an important fact: A pure state, P̂ j = |ψj〉〈ψj〉 represents a measurement that corresponds to to asking a Yes-No
question, i.e., to an indicator function.

22In classical statistical mechanics, j indexes a classical phase space state, whereas in quantum statistical mechanics it
indexes a (pure) quantum mechanical state.
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= tr
e−βĤ

Zβ︸ ︷︷ ︸
ρ̂

(
n−1∑
i=0

|ψi〉〈ψi|

)
︸ ︷︷ ︸

Î

|ψj〉〈ψj|︸ ︷︷ ︸
P (j) = M̂

= tr ρ̂M̂ = 〈M〉 = 〈P̂ (j)〉 = wj.

4.2 Free Energy for a Finite-Dimensional Quantum Mechanical System
The relevant Thermodynamic Potential for the canonical distribution is the (Helmoltz) free energy, which
is classically given by

FT (p) = U(p)− TS(p),

where p = (p0, · · · , pn−1)T ,
∑

i pi = 1, denotes the classical canonical distribution.23 In classical
statistical mechanics, the quantity

S = S(p) = −
n−1∑
j=0

pj ln pj = −E {ln p}

is the (Gibbs) thermodynamic entropy (setting k = 1) and

U = U(p) = E {E} = 〈E〉 =
n−1∑
j=0

pjEj

is the average energy (internal energy) of the system. It is evident that the free energy is a function of the
temperature T (or, equivalently, of β = 1/T ) and of the Boltzmann-Gibbs distribution p, F = FT (p).

It is a fundamental fact of equilibrium statistical mechanics that the free energy takes its minimum
value at thermal equilibrium, a fact which is true both for classical and quantum statistical mechanics.24

Note that minimizing the free energy corresponds to a balance between reducing the internal energy U
and increasing the entropy S. Classical simulated annealing (CA), draws MCMC samples from a system
having the Boltzmann-Gibbs distribution as its stationary distribution while taking T → 0 very slowly.
This ultimately results in samples being drawn from, or near, the T = 0 energy ground state of the system.

Quantum mechanically, the free energy for the canonical state given in Equations ρ̂ (7) and (9) is

FT (ρ̂) = U(ρ̂)− TS(ρ̂)

where
U(ρ̂) = 〈E〉 = tr ρ̂Ĥ and S(ρ̂) = −tr ρ̂ ln ρ̂.

In this form, S = S(ρ̂) is known as the quantum mechanical, or von Neumann, entropy. Thus, quantum
mechanically,

FT (ρ̂) = tr ρ̂Ĥ + T tr ρ̂ ln ρ̂. (10)

23But again note the equivalence of the classical and quantum mechanical Boltzmann-Gibbs distribution, pj = wj =
Z−1
β e−βEj , and see the next paragraph.

24This has interesting consequences. For example, it allows for an alternative derivation of the classical Boltzmann-Gibbs
distribution as the distribution that minimizes the free energy with respect to p subject to the constraint that

∑
j pj = 1.
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One can readily see that this yields the classical free energy as we can show that U(ρ̂) = U(p) and
S(ρ̂) = S(p) as follows:

U(ρ̂) = tr ρ̂Ĥ = tr
e−βĤ

Zβ

n−1∑
j=0

Ej|ψj〉〈ψj|

= tr
1

Zβ

n−1∑
j=0

Eje
−βĤ |ψj〉〈ψj| = tr

1

Zβ

n−1∑
j=0

Eje
−βEj |ψj〉〈ψj|

=
n−1∑
j=0

e−βEj

Zβ︸ ︷︷ ︸
=wj = pj

Ej tr |ψj〉〈ψj|︸ ︷︷ ︸
= 〈ψj |ψj〉= 1

=
n−1∑
j=0

pjEj = U(p).

Note that the canonical state ρ̂ can be written in terms of the orthonormal energy eigenvectors |ψj〉 as
shown in Eq. (9). For this reason wj = pj and |ψj〉 are eigenvalue/eigenvector pairs for the operator ρ̂,

ρ̂ |ψj〉 = pj |ψj〉,

and Eq. (9) gives the spectral representation of ρ̂. Therefore (see Eq. (2))(
ρ̂ ln ρ̂

)
|ψj〉 =

(
pj ln pj

)
|ψj〉

and (see Eq. (3))

ρ̂ ln ρ̂ =
n−1∑
j=0

(
pj ln pj

)
|ψj〉〈ψj|.

We have,

S(ρ̂) = −tr ρ̂ ln ρ̂ = −tr
n−1∑
j=0

(
pj ln pj

)
|ψj〉〈ψj|

= −
n−1∑
j=0

(pj ln pj) tr |ψj〉〈ψj|︸ ︷︷ ︸
〈ψj |ψj〉= 1

= −
n−1∑
j=0

pj ln pj = S(p).

5 Optimization via Classical and Quantum Annealing

As mentioned above, a canonical statistical mechanical system25 has a free energy,

FT (ρ̂) = U(ρ̂)− TS(ρ̂) = tr ρ̂Ĥ + T tr ρ̂ ln ρ̂,

which is a minimum. For low enough temperature, T ≈ 0, minimum free energy effectively corresponds
to minimum internal energy, U = 〈E〉. Further, at T ≈ 0, energy fluctuations are negligible and the inter-
nal energy is approximately equal to the ground state energy U = 〈E〉 ≈ E0 ≈ constant. Exploiting these
two facts, we can “anneal” the system into an equilibrium configuration that approximates a ground-state
configuration. In the D-Wave computer, annealing is not only controlled by the temperature parameter T

25I.e., a mechanically isolated, constant particle, constant volume, system in thermal equilibrium with a heat bath at tem-
perature T in the state (9).
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in an initial “classical annealing” phase used to initialize the system, but also by the subsequent use of
magnetic coupling of spin-1

2
qubits to an external driving field and to each other via interaction fields in a

second “quantum annealing” phase that adiabatically evolves the Hamiltonian into a desired final form,
all the while maintaining the system in a ground state configuration.

Specifically, in the D-Wave computer we take,26

Ĥ = Ĥ(ΓP ,ΓD) = ΓP ĤP + ΓDĤD,

where ΓD and ΓP take positive real number values. ĤP is a “problem Hamiltonian operator”, which en-
codes an optimization loss-function that we wish to minimize, and ĤD is the initial, or disorder, Hamil-
tonian operator that is used to prepare the state of the D-Wave computer into a maximally non-committal
(“maximally disordered”) initialization configuration. The real scalar ΓP ∈ [0, 1] is a control parame-
ter that allows one to “turn on” the problem Hamiltonian HP . The real scalar ΓD ∈ [0, 1] is a control
parameter that allow one to “turn off” the disorder Hamiltonian HD. With this form for Ĥ , we have

FT (ρ̂; ΓP ,ΓD) = tr ρ̂Ĥ(ΓP ,ΓD) + T tr ρ̂ ln ρ̂ = ΓP tr ρ̂ĤP + ΓD tr ρ̂ĤD + T tr ρ̂ ln ρ̂.

To perform a two-stage (classical plus quantum) annealing process, we start with ΓP = 0 and ΓD = 1,
and work with the system

FT (ρ̂; 0, 1) = tr ρ̂Ĥ(0, 1) + T tr ρ̂ ln ρ̂ = tr ρ̂ĤD + T tr ρ̂ ln ρ̂.

We then slowly cool (thermally anneal) the system to a very low temperature, T → T0 ≈ 0 (around 15
millikelvin). This essentially corresponds to a classical annealing (CA) step which gets us (close to) the
ground state of HD, which is designed to be a maximally disordered superposition of all of the accessible
states of the system.

Now assuming that T = T0 ≈ 0, we next consider the system

FT0(ρ̂; ΓP ,ΓD) = ΓP tr ρ̂ĤP + ΓD tr ρ̂ĤD + T0 tr ρ̂ ln ρ̂.

We very slowly (adiabatically) take ΓD from 1 to 0 while simultaneously taking ΓP from 0 to 1. This is
the quantum annealing (QA) stage. This is done very slowly (“adiabatically”) so that the system all the
while has a high probability of being maintained in a ground state configuration. This adiabatic transition
from ĤD to ĤP is formally indicated by

lim
ΓD→0

ΓP→1

FT0(ρ̂; ΓP ,ΓD) = tr ρ̂ĤP + T0 tr ρ̂ ln ρ̂.

In this limit, the free energy being at a minimum for a system in thermal equilibrium, we should be in a
(near) ground-state configuration of the system with (final) Hamiltonian ĤP , a configuration which can
be read from the system registers.

26Here we follow the discussion in [22].



Quantum Mechanics & Annealing Lecture Notes — K. Kreutz-Delgado — Version PRL-QMN-2016.v1.2b 11

6 The D-Wave Initialization State and Hamiltonian Operator ĤD

6.1 The Completely Sideways State |r〉
The D-Wave computer is designed to behave like a coupled quantum mechanical spin-glass system com-
prised of N distinguishable spin-1

2
qubits [24, 22, 18].27 A single qubit can be represented in the two

dimensional complex state spaceH ' C2.28 The measurements of the qubits are taken along the vertical
(or z) direction, and for this reason it is natural take as a basis for a single-qubit system to be the two
orthonormal vectors “spin up” = |u〉 '

(
1
0

)
∈ C2 and “spin down” = |d〉 '

(
0
1

)
∈ C2.29 It is convenient

to represent a basis vector in C2 by |z〉 where z ∈ {u, d}. We can think of |z〉 as representing a “vertical
state” (up or down) for a single qubit system.

For an N qubit system, let Hi ' C2 be the component state space for qubit i. Hi has basis vectors
|zi = u〉 '

(
1
0

)
and |zi = d〉 '

(
0
1

)
which we denote as |zi〉 with zi ∈ {u, d}. For convenience we set30

z = (z1, · · · , zN) ∈ {u, d}N = {u, d} × · · · × {u, d}︸ ︷︷ ︸
(N−1)-fold cartesian product

.

Let the interacting compound N -qubit system have a compound state-space given by

H = H1 ⊗ · · · ⊗ HN .

The typical basis vector for the compound space H when using the N -fold tensor product “z-basis” is31

|z〉 = |z1, · · · , zN〉 = |z1〉 ⊗ · · · ⊗ |zN〉 =
N⊗
j=1

|zj〉, z ∈ {u, d}N . (11)

We call the compound basis vector |z〉 a “vertical state” for the compound system.32 Note that H is an
n = 2N dimensional Hilbert space.33 A general compound system state vector |φ〉 ∈ H has the z-basis
representation

|φ〉 = Î |φ〉 =

 ∑
z∈{u,d}N

|z〉〈z|

 |φ〉 =
∑

z∈{u,d}N︸ ︷︷ ︸
2N terms in this sum

cz |z〉, cz = 〈z|φ〉.

In general, we cannot write |φ〉 ∈ H as a simple tensor product of vectors in the component subspaces
Hi, i = 1, · · · , N , in which case we say that the component qubits are entangled. Otherwise they are
unentangled.34

27Where N = 1,000 in the current generation.
28The symbol “'” is used to indicate that the right-hand-side is a convenient choice of a concrete representation of the

abstract entity on the left-hand-side.
29Alternative common symbols used in place of {|u〉, |d〉} for the spin up/down basis vectors are {|+ 1〉, |− 1〉}, |+〉, |−〉},

{| ↑〉, | ↓〉}, {|0〉, |1〉}, and {|1〉, |0〉}.
30Note that z ∈ {u, d}N is just shorthand for |zj〉 ∈ {u, d}, j = 1, · · · , N .
31It is useful to note that the tensor product is linear in each position. I.e.,

|a〉 ⊗
(
β1|b1〉+ β2|b2〉

)
⊗ |c〉 ⊗ |d〉 = β1|a〉 ⊗ |b1〉 ⊗ |c〉+ β2|a〉 ⊗ |b2〉 ⊗ |c〉 ⊗ |d〉.

To describe this property, we say that the tensor product is multilinear.
32Again, “vertical” means that both, and only, “pointing up” and “pointing down” component qubits are allowed. Thus we

can say that the bases are comprised of all of the vertical unit vectors
33I.e., there are 2N basis vectors.
34It is very important to clearly understand the distinction between entanglement and quantum superposition.
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Assume that we can turn on a globally transverse magnetic field that is directed “to the right”, i.e.,
along the positive x-direction in physical space. We will denote a single qubit oriented along the positive
x-direction (“to the right”) by the unit vector |r〉 ∈ H, which we denote by x = r, and along the negative
x-direction (“to the left”) by the unit vector |l〉, which we denote by x = l. Note that these two vectors
are orthogonal. In terms of the z-basis for a single qubit system, we have

|r〉 =
1√
2

(
|u〉+ |d〉

)
and |l〉 =

1√
2

(
|u〉 − |d〉

)
.

We will say that |r〉 and |l〉 represent the “sideways states” for a single qubit system.

Now consider the compound system. We define a “sideways state” to be

|x〉 = |x1〉 ⊗ · · · ⊗ |xN〉 ∈H

where xj ∈ {r, l}.35 If all N qubits are oriented “to the right” along the positive x-direction in physical
space, we have the compound state,

|x = r〉 = |x1 = r〉 ⊗ · · · ⊗ |xN = r〉 ∈H,

which, using a natural notation, we conveniently write as,

|r〉 = |r1〉 ⊗ · · · ⊗ |rN〉 =
N⊗
j=1

|rj〉 ∈H. (12)

Similarly, we have

|` 〉 =
N⊗
j=1

| lj〉 ∈H.

We will call |r〉 and |` 〉 the “completely sideways states” of the compound system.36

Note that the completely sideways state |r〉 is obviously a tensor product state over all of the compo-
nent spaces, so that the component qubits are unentangled. We can rewrite |r〉 as

|r〉 =

[
1√
2

(
|u1〉+ |d1〉

)]
⊗ · · · ⊗

[
1√
2

(
|uN〉+ |dN〉

)]
, (13)

or

|r〉 = 2−
N
2

[(
|u1〉+ |d1〉

)
︸ ︷︷ ︸

∈H1

⊗ · · · ⊗
(
|uN〉+ |dN〉

)
︸ ︷︷ ︸

∈HN

]
=

N⊗
j=1

 ∑
zj∈{u,d}

|zj〉


︸ ︷︷ ︸

∈Hj

∈H. (14)

Again, the tensor product factorization into component spaces is evident. Utilizing the multilinearity
property of the tensor product, we can rewrite the completely sideways state |r〉 as

|r〉 =
∑

zj∈{u,d}

N⊗
j=1

|zj〉 =
∑

z∈{u,d}N
|z〉. (15)

Note that when written in this manner, it is not immediately apparent that the completely sideways state
|r〉 is an unentangled state.

35Note that there are 2N different sideways vectors.
36Note that a completely sideways state requires that the component qubit spins are either all pointing to the right, in which

case we have the compound state |r〉, or all pointing to the left, in which case we have the state |` 〉.
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6.2 Statistical Properties of the Completely Sideways State |r〉
Consider the jth qubit in isolation. This system can be prepared to be in any state |vj〉 ∈ Hj , but assume
that it has been prepared to be in the sideways state |vj〉 = |rj〉,

|rj〉 =
1√
2

(
|uj〉+ |dj〉

)
.

Then the probability that a vertical measurement detects the qubit in the vertical state |uj〉 is

prj(uj) = |〈rj, uj〉|2 =
1

2
.

Similarly,37

prj(dj) = |〈rj, dj〉|2 =
1

2
.

We say that state |rj〉 is maximally noncommittal in terms of providing a bias towards either of the ver-
tical states |uj〉 and |dj〉. Note that because prj(uj) = prj(dj), preparing the system in state |rj〉 creates
the maximum entropy distribution over all the possible probabilities pvj(uj) and pvj(dj) determined from
preparing the system to be an a state |vj〉 ∈ Hj . The fact that |rj〉 creates the maximum entropy distribu-
tion is another way of saying that it is maximally noncommittal in terms of biasing a vertical measurement
in favor of |uj〉 or |dj〉. Note that using the formalism of the density matrix, the above derivations corre-
spond to,

ρ̂ = P (rj) = |rj〉〈rj| = pure state, P (uj) = |uj〉〈uj|, P (dj) = |dj〉〈dj|.

prj(uj) = tr ρ̂P (uj) =
1

2
and prj(dj) = tr ρ̂P (dj) =

1

2
.

Let |zj〉 ∈ Hi be a vertical state inHi, zj ∈ {uj, dj}. We have,

prj(zj) = tr ρ̂P (zj) = |〈rj|zj〉|2 =
1

2
.

Now assume that the entire compound system has been prepared to be in the completely sideways
state |r〉 ∈ H. This corresponds to the pure state ρ̂ = |r〉〈r|. Given the completely sideways state ρ̂
what is the probability of a vertical state |z〉? We have,

pr(z) = tr ρ̂P (z) = tr
(
|r〉〈r|

)(
|z〉〈z|

)
= |〈r|z〉|2.

However (see Equations (11) and (12)),

|〈r|z〉|2 =
∣∣∣(〈r1| ⊗ · · · ⊗ 〈rN |

)(
|z1〉 ⊗ · · · ⊗ |zN〉

)∣∣∣2 =
N∏
j=1

|〈rj|zj〉|2 =
N∏
j=1

prj(zj) =
1

2N
.

Note that it is reasonable to write,
prj(zj) = pr(zj)

37Of course prj (uj) + prj (dj) = 1.
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because r =⇒ rj .38 Thus we have that for any vertical state |z〉 = |z1, · · · , zN〉,39

pr(z) =
N∏
j=1

pr(zj) =
1

2N
= constant. (16)

Also note that, ∑
z∈{u,d}N

pr(z) = 2N
(

1

2N

)
= 1,

so that the set of all possible vertical states forms a probability sample space (an exhaustive set of disjoint
events).40 Thus if the compound qubit system is prepared to be in the completely sideways state |r〉, then
1) all vertical states are equally likely; 2) the measurements of the component qubits of a vertical state
are completely independent from each other,41 and 3) each component qubit is equally likely to be up
or down. This means that the probability distribution on the vertical states induced by the completely
sideways state |r〉 is a maximum entropy distribution.

It is evidently, then, that being in the completely sideways state |r〉 corresponds to being maximally
noncommittal as to the possible vertical values of the component qubits. More to the point, the initial-
ization state is in a complete quantum superposition of all possible vertical values (up or down) of the
component qubits. We can view the state |r〉 as one that induces “maximum disorder” on the vertical
states. Another way to think about this is that all possible up-down qubit states simultaneously exist as
a consequence of quantum superposition allowing for a “quantum parallelism” and that initializing the
D-Wave computer to this state leads to the system exploring all possible states simultaneously as the
Hamiltonian operator is evolved to the problem Hamiltonian as discussed earlier.42

It is the job of the “disorder Hamiltonian operator” to ensure that at thermal equilibrium the system
is in this state of “maximum disorder”. For this reason we call a Hamiltonian operator that has |r〉
as a ground energy eigenvalue a “disorder Hamiltonian” ĤD. This maximally disordered state |r〉 is
the initialization state that the D-Wave computer is placed into in the first stage of thermal annealing
discussed earlier. In the next subsection we describe this in more detail.

6.3 Initialization using the Disorder Hamiltonian Operator ĤD

We now describe the “disorder Hamiltonian” operator ĤD for the compound N -qubit system that has the
completely sideways state |r〉 as its lowest energy eigenstate,43

ĤD|r〉 = E0|r〉.
38Alternatively, one can take the component state |zj〉 to be equivalent to the compound state 0⊗· · ·⊗0⊗|zj〉⊗0⊗· · ·⊗0,

where each 0 is the zero vector in a Hilbert spaceHj .
39Recall that factorizability of a joint distribution into the product of its marginals is the definition of independence.
40This is because we are restricting ourselves to only measuring qubit events in the vertical direction.
41This is related to the fact that the state |r〉 is an unentangled state.
42In Section 3.E of reference [24], the state |r〉 is called the “symmetric state” |ΦS〉, presumably because it is “symmetric”

(non-committal) with respect to a preference for up-down qubit states. However, this state is not fully symmetric (“unpolar-
ized”) with respect to (hypothetical) measurements in other directions—see the comments on pages 207-208 of [25] and the
discussion regarding the lack of uniqueness of the density matrix in [2]. Of course since D-Wave only provides measurements
in the up-down directions this point is irrelevant in this context.

43I.e., as its ground state.
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We assume that the compound qubit system is in thermal equilibrium with a heat bath, and we therefore
work with the Boltzmann-Gibbs canonical density function shown in Equations (7) and (9). At thermal
equilibrium, the free energy

FT (ρ̂; 0, 1) = tr ρ̂ ĤD + T tr ρ̂ ln ρ̂ = U(ρ̂)− TS(ρ̂) (17)

takes its minimum value. We will give a condition for which minimum free energy corresponds to the
compound system being in the completely sideways ground state |r〉 with high probability when ĤD is
chosen as follows.

Since our goal is to drive all the component qubits “to the right”, we choose a Hamiltonian operator
that gives the energy of each qubit in a transverse magnetic field pointing to the right. For the jth qubit
this corresponds to a transverse field interaction Hamiltonian of

Ĥ
(j)
D = −bjσ(j)

x (18)

where σ(j)
x is the standard Pauli spin matrix expressed in the |uj〉–|dj〉 reference frame and bj > 0 is a

local transverse magnetic field intensity affecting qubit j.44 Because the sideways vectors |rj〉 and |lj〉
are the eigenvectors of σ(j)

x with eigenvalues +1 and −1 respectively45 we have,

Ĥ
(j)
D |rj〉 = E0|rj〉 = −bj|rj〉 and Ĥ

(j)
D |lj〉 = E1|lj〉 = +bj|lj〉.

For the composite system comprised of N qubits, we set46

bj = b = constant > 0 (19)

for all component qubits and take,47

ĤD = Ĥ
(1)
D + · · ·+ Ĥ

(N)
D =

N∑
j=1

Ĥ
(j)
D , (20)

where

Ĥ
(j)
D = Î ⊗ · · · ⊗ Î ⊗ Ĥ(j)

D ⊗ Î ⊗ · · · ⊗ Î . (21)

If we set
X̂j = Î ⊗ · · · ⊗ Î ⊗ σ(j)

x ⊗ Î ⊗ · · · ⊗ Î ,

then
Ĥ

(j)
D = −b X̂j

and

ĤD = −b
N∑
j=1

X̂j (22)

44The scalar factor of the magnetic dipole moment µ(j)
x = γσ

(j)
x has been taken to be one, γ = 1.

45See the appendix of [26].
46I.e., we turn on a uniform transverse magnetic field with uniform magnetic field intensity b.
47The energy Hamiltonian is additive because there are no spin-spin interaction terms. I.e., all qubit-qubit interactions are

“turned off.”
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which is Equation (3.34) of [24].48

Note that

Ĥ(j)|x〉 = ±b|x〉, j = 1, · · · , N, (23)

for any sideways state |x〉, and

Ĥ(j)|r〉 = −b|r〉, for all j = 1, · · · , N, (24)

for the completely sideways state |r〉. It is evident from Equations (20) and (23) that the sideways states
|x〉 are the eigenvectors of ĤD and that the energy levels (eigenvalues) range from the ground state
energy E0 = −Nb to the most energetic state En−1 = +Nb, with n = 2N .49 In particular the completely
sideways vector |r〉 is the unique (i.e., nondegenerate) ground state eigenvector,

ĤD|r〉 =
N∑
j=1

Ĥ
(j)
D |r〉 = −Nb|r〉 = E0|r〉, (25)

with ground state energy E0 = −Nb.50 Note that the difference between adjacent distinct energy levels
is

∆E = E(`+1) − E(`) = 2b.

In particular, because the ground state is nondegenerate, we have,

E1 − E0 = 2b

and, more generally,
Ej − E0 ≥ 2b,

for j 6= 0.

Let us now proceed to compute the two terms on the right-hand-side of the free-energy shown in
equation (17). From our discussion in Section 4.2 we know that

ρ̂ =
n−1∑
j=0

pjP
(xj) =

n−1∑
j=0

pj|xj〉〈xj| ,

S(ρ̂) = −tr ρ̂ ln ρ̂ = −
n−1∑
j=0

pj ln pj

and

U(ρ̂) = 〈E〉 =
n−1∑
j=1

pjEj

48Using the spectral representations of the hermitian operators X̂j in (22) leads to Equation (3.32) of [24]. Note that the
spectral representation of X̂j easily follows from that of σx, σx = |r〉〈r| − |l〉〈l|.

49We denote the energy of the sideways state |xj〉 by Ej . Because there are N + 1 distinct energy levels (eigenvalues) and
n = 2N eigenvectors, it is evident that most of the energy levels are highly degenerate for N � 1.

50Similarly it is easy to show that the completely sideways vector |`〉 is uniquely the most energetic state with energy
En−1 = Nb.



Quantum Mechanics & Annealing Lecture Notes — K. Kreutz-Delgado — Version PRL-QMN-2016.v1.2b 17

with

pj =
e−βEj

Zβ
=

e−βEj

e−βE0 + e−βE1 + · · ·+ e−βEn−1
=

e−(Ej−E0)/T

1 + e−(E1−E0)/T + · · ·+ e−(En−1−E0)/T
. (26)

Note that for j 6= 0,

pj ≤ e−(Ej−E0)/T ≤ e−2b/T → 0 as
b

T
→∞,

while
p0 → 1 as

b

T
→∞.

This yields,51

lim
b
T
→∞

ρ̂ = P (x0) = |x0〉〈x0| = |r〉〈r| , (27)

lim
b
T
→∞

U(ρ̂) = E0 (28)

and

lim
b
T
→∞

TS(ρ̂) = 0. (29)

Thus for small enough temperature, T = T0 ≈ 0, and large enough transverse magnetic field, b� 1, we
have pj ≈ δj0, yielding a (minimum) free energy value of,

FT0(ρ̂; 0, 1) = U(ρ̂)︸ ︷︷ ︸
≈E0

− T0S(ρ̂)︸ ︷︷ ︸
≈ 0

≈ E0 = −Nb. (30)

Because the ground state |r〉 is nondegenerate, this means for a large enough value of b/T the system is in
the completely sideways state |r〉 with high probability (p0 ≈ 1) once it has reached thermal equilibrium.
This result is quite reasonable: because the first excited state energy is 2b higher than the ground state
level, a large value of b ensures a wide energy gap between the first two energy levels, while a small
value of the temperature T , T = T0 ≈ 0, ensures that it is unlikely that a thermal fluctuation can push the
ground state through the energy gap to the next energy level.

One can arrive at Eq. (30) in a slightly different, but equivalent way, by noting the important fact that
that Eq. (17) is equivalent to (see below)

FT (ρ̂; 0, 1) = −T lnZT (31)

where (see Eq. (8))

ZT = tr e−
1
T
Ĥ =

n−1∑
j=0

e−
1
T
Ej

= e−
1
T
E0

n−1∑
j=0

e−
1
T

(Ej−E0)

= e−
1
T
E0

(
1 +

n−1∑
j=1

e−
1
T

(Ej−E0)

)
.

51For fixed b, Eq. (27) shows that, with probability one, the equilibrium state is the (assumed unique) ground state in the
limit that T → 0.
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Therefore,

FT (ρ̂; 0, 1) = E0 − T ln

(
1 +

n−1∑
j=1

e−
1
T

(Ej−E0)

)
. (32)

Thus 52

lim
T→0

FT (ρ̂; 0, 1) = E0. (33)

Note that this result is consistent with Eq. (30).

It is straightforward to derive (31) from Eq. (17). Simplifying the notation slightly, we have

FT = U − TS = tr ρ̂Ĥ + T tr ρ̂ ln ρ̂ = T
(

tr ρ̂ ln ρ̂+ β tr ρ̂Ĥ
)
.

But
ln ρ̂ = ln

[(
Z−1I

)
e−βĤ

]
= − (lnZ) I − βĤ,

so that
tr ρ̂ ln ρ̂ = − (lnZ) tr ρ̂︸︷︷︸

= 1

−β tr ρ̂Ĥ

proving Eq. (31).

7 Some Final Comments

Once the system has thermally relaxed to the initialization state |r〉 under the influence of the disorder
Hamiltonian ĤD, the system can be adiabatically evolved to obtain a minimizing state to the problem
Hamiltonian ĤP as sketched in Section 5 and described in much more detail in references [24, 22, 18].

A general quantum system has a time-dependent Hamiltonian. Unfortunately, it is usually difficult
to analyze and shape the behavior of a multivariate, time-dependent linear system.53 However, the situ-
ation is much more benign for time invariant systems. A quantum system that has a Hamiltonian that is
independent of time, which we refer to as stationary, is an example of such a system. As is evident from
the discussion on pages 119-124 of [26] and Section III.B of [24], a stationary quantum system has the
property that if it is prepared to be in an energy eigenstate, then it remains in that eigenstate forever. In
particular, this is true if the system is prepared in a ground energy eigenstate. Because of the difficulty of
a general analysis of nonstationary quantum systems, it is natural to ask if there are “nice” circumstances
for which this property is preserved. The Adiabatic Theorem says that 1) if a nonstationary quantum
system is prepared in a ground state; 2) the instantaneous energy gap between the ground and first excited
state is “large enough”; and 3) the time-dependent Hamiltonian varies slowly enough (“adiabatically” in
the parlance of physicists) then the system remains in its ground state as it evolves in time. This is the
rationale for the procedure described in Section 5 above, and much more thoroughly in references [24]

52Recall that we are assuming that the ground state is nondegenerate. Reference [7] refers to results (27) and (33) as the
Feynman-Kac Theorem (see Theorem 9.4 of [7]); however a Google search will show that this term is more often used to refer
to an alternative theorem by Feynman and Kac.

53This is a general fact that extends beyond the domain of quantum mechanics. For example, the theory of control of linear
time invariant (LTI) state-space systems is quite mature, as is evidenced by the many LTI control theory textbooks which exist,
whereas the theory of control for general time-varying linear systems is much less well-developed.
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and [18] which cite the foundational literature in AQC and QA. Proofs and discussions of the Adiabatic
Theorem can be found in Chapter 10 of [5] and in [23], pages 346-348.

Finally, many examples of optimization problems that can be solved using Quantum Annealing and
the construction of associated problem Hamiltonians are given in the report [24] and the monograph [18],
which the reader should carefully study, as well as the references cited therein.

Appendix A. Nonuniqueness of Admissible Factorizations of the Density Matrix

We will show the nonuniqueness of factorizations of the density operator on a finite-dimensional Hilbert
space of dimension n following the discussion given in [2]. In the discussion we will interchangeably
represent vectors and their duals respectively by54

φ ⇐⇒ |φ〉 and φ∗ ⇐⇒ 〈φ|.

The general form of the density matrix is

ρ̂ = v1P̂
(1) + · · ·+ vrP̂

(m) =
∑
j=1

vjP
(j) =

m∑
j=1

vjφjφ
∗
j , (34)

with P (j) = φjφ
∗
j and, in general, m 6= n. The conditions are imposed that

‖φj‖2 = φ∗jφj = 〈φj|φj〉 = 1, j = 1, · · · ,m (35)

and

vj > 0, j = 1, · · ·m with v1 + · · ·+ vm = 1. (36)

Note that φj , j = 1, · · · ,m are not required to be orthogonal. If φj is represented by a column vector,
then φ∗j = φHj is a row vector and P (j) = φjφ

H
j and ρ̂ are n× n matrices. We will see below that m can

be no smaller than the rank of ρ̂.

A density matrix ρ̂ represents the state of a quantum mechanical system, and is a self-adjoint (hermi-
tian), positive operator of trace one,

ρ̂ = ρ̂∗ ≥ 0 , tr ρ̂ = 1,

where here ρ̂∗ denotes the adjoint of ρ̂. The rank of ρ̂ is

r = rank ρ ≤ n,

where, in general, r 6= n and r 6= m.55 As mentioned previously, the factorization

ρ̂ =
m∑
j=1

vjφjφ
∗
j (37)

54If |φ〉 = φ is represented by a finite-dimensional column vector, φ ∈ H = Cn then 〈φ| = φ∗ is given by the hermitian
transpose, φ∗ = φH ∈ H∗ ∼ Cn, which is a finite-dimensional row vector. (Note that the finite dimensional Hilbert space is
self-dual,H∗ ∼ H.) In this case, the dyad (outer product) is a rank one n× n matrix, |φ〉〈φ| = φφ∗ = φφH ∈ Cn×n.

55Note that we are carefully distinguishing between the dimension of the Hilbert space, n, the number of terms used to
prepare the state ρ̂, m, and the rank of ρ̂, r.
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can be interpreted as a procedure for preparing the system into the state ρ̂. We say “a procedure” rather
than “the procedure” as the factorization shown on the right-hand-side is not unique. In fact, there are an
infinity of such factorizations and hence an infinity of possible procedures for preparing the system into
the same quantum mechanical state ρ̂.

Because ρ̂ of (37) is positive and hermitian it has a spectral representation which yields an alternative
canonical decomposition

ρ̂ =
r∑
i=1

wiψiψ
∗
i , (38)

where, as defined earlier, r = rank ρ̂. The eigenvectors of the spectral representation, ψi, i = 1, · · · , r,
are orthonormal,

ψ∗iψj = 〈ψ|ψ〉 = δij.

and the corresponding eigenvalues wi satisfy,

wj > 0, j = 1, · · · r with w1 + · · ·+ wr = 1. (39)

We proceed to show that given a density matrix56 ρ̂, which must have a canonical representation (38),
then there are an infinity of alternative factorizations of the form (37).

A.1 Special Case: Degeneracy of the Canonical Factorization
Before we deal with the general case, we describe an important special case when some of the eigenvalues
of the right-hand-side of (38) are degenerate. If (say)

w` = w`+1 = · · · = w`+g−1︸ ︷︷ ︸
these eigenvalues are g-fold degenerate

,

then the associated eigenvectors ψ`, · · · , ψ`+g−1 span a g-dimensional eigenspace. We can use any alter-
native orthonormal set of vectors that span this eigenspace57 in lieu of ψi, i = `, · · · , ` + g − 1. Let us
call these alternative eigenvectors ψ′i , i = `, · · · , `+ g − 1. Then,

ρ̂ =
`−1∑
i=1

wiψiψ
∗
i + w`

`+g−1∑
i=`

ψ′iψ
′∗
i +

r∑
i=`+g

wiψiψ
∗
i . (40)

The most extreme case of this is when ` = 0 and g = r = n, in which case,

ρ̂ =
1

n

n∑
i=1

ψiψ
∗
i =

1

n
I.

A brief discussion of this latter case is given on page 207 of [25].

56I.e., give a positive, hermitian operator ρ̂ with trace ρ̂ = 1.
57Note that there are an infinite number of possibilities
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A.2 The General Case
Given a density matrix ρ̂ we have,

ρ̂ =
r∑
i=1

wiψiψ
∗
i︸ ︷︷ ︸

F1

=
m∑
j=1

vjφjφ
∗
j︸ ︷︷ ︸

F2

, (41)

where F1 is the canonical (spectral) factorization of ρ̂, which we assume is at hand, and F2 is an alterna-
tive, general admissible factorization. We will show that with F1 at hand we can produce an infinity of
factorizations of the form F2.

It is evident from (41) that the range of ρ̂ satisfies,

R(ρ̂) = span {ψ1, · · · , ψr} = span {φ1, · · · , φm} ⊂ H.

Furthermore, since r = rank ρ̂ = dimR(ρ̂), we must have m ≥ r, as claimed earlier, and that the
orthogonal projection operator ontoR(ρ̂) is given by,

P = PR(ρ̂) =
r∑
i=1

ψiψ
∗
i .

Since φj ∈ R(ρ̂), we have φj = Pφj . Thus, for j = 1, · · · ,m,

φj = Pφj =
r∑
i=1

ψiψ
∗
i φj =

r∑
i=1

bij ψi =
[
ψ1 · · · ψr

]b1j
...
brj

 = Ψbj (42)

where
bij = ψ∗i φj = 〈ψi|φj〉,

bTj =
(
b1j · · · brj

)
∈ Cr

and
Ψ =

[
ψ1 · · · ψr

]
.

The column vector bj is the representation of φj in the ψi-basis forR(ρ̂). Note that

Ψ∗Ψ =

ψ
∗
1
...
ψ∗r

 [ψ1 · · · ψr
]

= Ir×r (43)

because ψi are orthonormal. Equations (35), (42), and (43) give

1 = ‖φj‖2 = φ∗jφj = bHj Ψ∗Ψbj = bHj bj

or

1 = ‖bj‖2 =
r∑
i=1

|bij|2 , j = 1, · · ·m. (44)
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Also note that setting
Φ =

[
φ1 · · · φm

]
= Ψ

(
b1 · · · bm

)
,

we have
Φ = ΨB

where
B =

(
b1 · · · bm

)
∈ Cr×m with (B)ij = bij.

Note that B is r ×m with normalized columns, m ≥ r, rankB = r, and B∗ = BH .

Let W = diag
(
w1 · · · wr

)
subject to (39) and V = diag

(
v1 · · · vm

)
subject to (36). Then the

consistency condition F1 = F2 becomes,

ΨWΨ∗ = ΦV Φ∗,

or
ΨWΨ∗ = ΨBVBHΨ∗.

Finally, using the fact that Ψ∗Ψ = I , we obtain our desired consistency condition as the matrix equation,

W = BVBH . (45)

With the above results in hand, we can create an infinity of consistent factorizations of the form F2

for a density matrix ρ̂ as follows:

1. Find r orthnormal eigenvectors and eigenvalues, wi, ψi, of ρ̂. I.e., determine the canonical factor-
ization ρ̂ = F1 (see (41)). Construct W = diag

(
w1 · · · wr

)
, which necessarily satisfies (39).

2. Find m unit vectors φj , j = 1, · · ·m, that span R(ρ̂), m ≥ r = rank ρ̂. This can done via any
procedure that produces m spanning vectors φi that satisfy PR(ρ̂)φj = φj . Our goal is to select
these unit vectors such that Step 4 below is successful.

3. Compute the elements of the matrix B, bij = ψ∗i φj = 〈ψi|φj〉. Note the requirement that conditions
(44) hold.

4. Determine vj , i = 1, · · ·m, by solving the matrix consistency condition (45) for a solution

V = diag
(
v1 · · · vm

)
.

Note the requirement that the solution satisfies conditions (36). If this cannot be done, go to Step 2
and make adjustments to the unit vectors φj (which will then produce adjustments to the values of
the elements, bij , of B).

Note that Steps (2), (3), and (4) are tightly coupled and must typically be dealt with simultaneously.

Once Step 4 has been successfully completed we will have produced a valid factorization,

ρ̂ =
m∑
j=1

vjφjφ
∗
j

which means that we will have effectively produced an admissible preparation procedure for placing
the system into the state ρ̂ which is generally different from that provided by the canonical spectral
factorization of the state.
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Note that a solution V = diag
(
v1 · · · vm

)
to the matrix consistency condition (45) must satisfy

the diagonal conditions,

wi =
m∑
k=1

vk|bik|2 , i = 1, · · · , r , (46)

and the off-diagonal conditions,58

0 =
m∑
k=1

vk bikb̄`k , ` 6= i , i, ` = 1, · · · , r . (47)

An example of the solution procedure outlined above is given on page 10 of [2].59
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